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To further understand the mechanism of bone development, it is therefore important to quantify the difference R2 = (.99 , difference Young osteocytes (n=47) Developmentally mature osteocytes (n=25)
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osteocytes. For this aim, we established an embryonic chick calvaria growth model, which reflected the growth = . Scale bar / Distiedew vk, kinafaunt 175 + 0.34 2.01 + 0.46%***
e’ 2
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applied to calculate the dye displacement ratio in cell bodies and permeability in the cellular process network. 0l L a 5 Number of processes S 50.40 * 6.20°
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In addition, a comparison was made between the young and developmentally mature osteocytes. The values show the mean = SD
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(4) The schematic illustration shows that the processes above & Y P 9 - Please notice that the mathematic model for calculating the permeability is based on
and below the target osteocyte also lay within the laser path. Laser Pathway = T;
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Results 3 channel permeability. Based on the above equation, the number of open Cx43 channels
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